

SRI AKILANDESWARI WOMEN'S COLLEGE, WANDIWASH

AMPEROMETRY

Class: II PG Chemistry

Dr. A. SHOBA

Head & Assistant Professor Department of Chemistry

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH

CONTENT:

- ☐ Introduction
- Principle
- Condition for performing amperometric titraton
- ☐ Appratus used for amperometric titration
- ☐ Types of amperometric titration
- ☐ Advantages of amperometric titraton
- ☐ Application of amperometric titration
- ☐ Disadvantages of amperometric titration

INTRODUCTION:

- Amperometry is one of the electrochemical method.
- It is concerned with the measurement of current under constant applied voltage.
- It is a form of quantitative analysis.
- When indicator method is not suitable we use amperometric method for determination of end point.
- Amperometric titration are otherwise called as polarographic titration because of similarity in principle.

PRINCIPLE:

- In amperometric titration, the potential applied between the indicator electrode and the appropriate depolarising reference electrode is kept constant & current pass through the cell, it is then measured during the titration.
 - ➤ Indicator electrode : Dropping mercury electrode. (DME)
 - Reference electrode : Saturated calomel electrode

- During the titration the concentration of electroreducible ion changes & hence the dffusion current also changes.
- According to Ilkovic equation: $I_d = 607 \text{ n CD}^{1/2} \text{ m}^{2/3} \text{ t}^{1/6}$ where,
 - I_d =Diffusion current due to electro-reducible ions.
 - n = No. of electrons involved in the reduction of one molecule.
 - C = Concentration expressed in mmol/lit.
 - D = Diffusion coeff. of ions (cm2/sec).

m= Wt. of mercury flowing through capillary (mg/sec)

t = Drop time in second.

CONDITION FOR PERFORMING AMPEROMETRIC TITRATION:

- > Both should be reducible.
- > the potential applied should limiting current.

APPRATUS USED FOR AMPEROMETRIC TITRATION:

- Dropping mercury electrode:
- Capillary tube about 10 -15 cm.
- Internal diameter of capillary 0.05mm.
- A vertical distance being maintained between DME & the solution.
- Drop time : 1-5 se
- Drop diameter 0.5 mm

Fig. Dropping Mercury Electrode

Rotating Platinum Micro-electrode :

- ➤ It consist of a glass rod with a bent platinum wire at about 600 rpm.
- Wire contacts are made through a mercury reservoir at the top so the potential can be applied & the current is produced

Fig. Rotating Platinum Micro-Electrode

Advantages of Using RPME over DME:

- Mercury cannot be used as electrode at positive potentials because of its oxidation, RPME is used.
- Diffusion current is 20 times larger than DME which allows to measure the small concentration of ion.
- The rotating platinum electrode can be used at positive potential up to + 0.9 Volt where as DME can be used only +0.4 volt to -2.0 Volt.
- The electrode is simple to construct.

Types of amperometric titrations:

- Titration of reducible ions vs non reducible ions. eg . Lead (pb²⁺) vs sulphate ions (SO₄)
- Titration of non reducible ions vs reducible ions. eg . Chloride (Cl⁻) vs silver (Ag²⁺)
- Titration of reducible ion vs reducible ions. eg. Lead (pb²⁺) vs Dichromate ion (Cr² O₇)
- Redox titration (oxidant and reductant). eg. Ferric (fe³⁺) ions vs titanous ions (ti)
- End point techniques (karl fischer).
 (Determination of water using karl fischer reagent)

Titration of reducible ions vs non reducible ions.

eg . Lead (pb²⁺) vs sulphate ions (SO₄²⁻)

Titration of non reducible ions vs reducible ions. eg . Chloride (Cl⁻) vs silver (Ag²⁺)

➤ Titration of reducible ion vs reducible ions.

eg. Lead (pb²⁺) vs Dichromate ion (Cr² O₇ D₇ Term (Cr² O₇ D₇ Term (Cr² O₇ D₇ Dichromate ion (Cr² O₇ Dichro

Titration of reducible ion vs reducible ions.

eg. Lead (pb²⁺) vs Dichromate ion (Cr² O₇ Dichrom

Redox titration (oxidant and reductant).
eg. Ferric (fe³⁺) ions vs titanous ions (ti)

- End point techniques (karl fischer).
 (Determination of water using karl fischer reagent):
 - A small potential is applied between the two similar platinum electrodes.
 - ➤ Addition of KF reagent (solution of iodine and SO₂ in pyridine and methanol) then till the end point. Where current is decrease at end point and only one electrode is depolarised and current is zero.

Advantages of Amperometric titration:

- Both reducible as well as non-reducible ions groups can be determine.
- Dilute solution can be analysed.
- The reaction carryout can be reducible or irreversible.
- The appratus is simple and temprerature need not be provided constants.

Application of Amperometric titration:

- Amperometric titration:
- > quantitative in nature.
- > used and determine the end point.
- Determination of water by using karl fischer reagent.
- Amperometric dectector (HPLC)Amperometric dectector can detect very low conc. of reducible ions & they can easily determine.
- Quantification of ion or mixture of ions.

Disadvantages of amperometric titration

- Inaccurate result are sometime obtained.
- The foreign substance should not be present in a larger concentrations than the substance to be titrated.

THINK!

9000